2 research outputs found

    A Model-Based Approach to Managing Feature Binding Time in Software Product Line Engineering

    Get PDF
    Software Product Line Engineering (SPLE) is a software reuse paradigm for developing software products, from managed reusable assets, based on analysis of commonality and variability (C & V) of a product line. Many approaches of SPLE use a feature as a key abstraction to capture the C&V. Recently, there have been increasing demands for the provision of flexibility about not only the variability of features but also the variability of when features should be selected (i.e., variability on feature binding times). Current approaches to support variations of feature binding time mostly focused on ad hoc implementation mechanisms. In this paper, we first identify the challenges of feature binding time management and then propose an approach to analyze the variation of feature binding times and use the results to specify model-based architectural components for the product line. Based on the specification, components implementing variable features are parameterized with the binding times and the source codes for the components and the connection between them are generated

    Adaptable software reuse:binding time aware modelling language to support variations of feature binding time in software product line engineering

    Get PDF
    Software product line engineering (SPLE) is a paradigm for developing a family of software products from the same reusable assets rather than developing individual products from scratch. In many SPLE approaches, a feature is often used as the key abstraction to distinguish between the members of the product family. Thus, the sets of products in the product line are said to have ’common’ features and differ in ’variable’ features. Consequently, reusable assets are developed with variation points where variant features may be bound for each of the diverse products. Emerging deployment environments and market segments have been fuelling demands for adaptable reusable assets to support additional variations that may be required to increase the usage-context of the products of a product line. Similarly, feature binding time - when a feature is included in a product and made available for use - may vary between the products because of uncertain market conditions or diverse deployment environments. Hence, variations of feature binding time should also be supported to cover the wide-range of usage-contexts. Through the execution of action research, this thesis has established the following: Language-based implementation techniques, that are specifically proposed to implement variations in the form of features, have better modularity but are not better than the existing classical technique in terms of modifiability and do not support variations in feature binding time. Similarly, through a systematic literature review, this thesis has established the following: The different engineering approaches that are proposed to support variations of feature binding time are limited in one of the following ways: a feature may have to be represented/implemented multiple time, each for a specific binding time; The support is only to execution context and therefore limited in scope; The support focuses on too fine-grained model elements or too low-level of abstraction at source-codes. Given the limitations of the existing approaches, this thesis presents binding time aware modelling language that supports variations of feature binding time by design and improves the modifiability of reusable assets of a product line
    corecore